Learning Bregman Distance Functions for Semi-Supervised Clustering
نویسندگان
چکیده
منابع مشابه
Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering
Learning distance functions with side information plays a key role in many machine learning and data mining applications. Conventional approaches often assume a Mahalanobis distance function. These approaches are limited in two aspects: (i) they are computationally expensive (even infeasible) for high dimensional data because the size of the metric is in the square of dimensionality; (ii) they ...
متن کاملSemi-supervised Evolutionary Distance Metric Learning for Clustering
Exising method for supervised clustering called Evolutionary Distance Metric Learning (EDML) has never been compared to other clustering method. This work conducted experiments to compare EDML with other semisupervised clusterings, such as COP-Kmeans and other DML methods. The result empirically confirms that EDML gives better clustering structure than the candidate clustering methods-i.e. K-me...
متن کاملSemi-supervised Distributed Clustering with Mahalanobis Distance Metric Learning
Semi-supervised clustering uses a small amount of supervised information to aid unsupervised learning. As one of the semi-supervised clustering methods, metric learning has been widely used to clustering the centralized data points. However, there are many distributed data points, which cannot be centralized for the various reasons. Based on MPCK-MEANS framework [1] , the method of distributed ...
متن کاملLearning Kernels for Semi-Supervised Clustering
As a recent emerging technique, semi-supervised clustering has attracted significant research interest. Compared to traditional clustering algorithms, which only use unlabeled data, semi-supervised clustering employs both unlabeled and supervised data to obtain a partitioning that conforms more closely to the user's preferences. Several recent papers have discussed this problem (Cohn, Caruana, ...
متن کاملSemi-Supervised Learning for Web Text Clustering
Supervised learning algorithms usually require large amounts of training data to learn reasonably accurate classifiers. Yet, for many text classification tasks, providing labeled training documents is expensive, while unlabeled documents are readily available in large quantities. Learning from both, labeled and unlabeled documents, in a semi-supervised framework is a promising approach to reduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2012
ISSN: 1041-4347
DOI: 10.1109/tkde.2010.215