Learning Bregman Distance Functions for Semi-Supervised Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering

Learning distance functions with side information plays a key role in many machine learning and data mining applications. Conventional approaches often assume a Mahalanobis distance function. These approaches are limited in two aspects: (i) they are computationally expensive (even infeasible) for high dimensional data because the size of the metric is in the square of dimensionality; (ii) they ...

متن کامل

Semi-supervised Evolutionary Distance Metric Learning for Clustering

Exising method for supervised clustering called Evolutionary Distance Metric Learning (EDML) has never been compared to other clustering method. This work conducted experiments to compare EDML with other semisupervised clusterings, such as COP-Kmeans and other DML methods. The result empirically confirms that EDML gives better clustering structure than the candidate clustering methods-i.e. K-me...

متن کامل

Semi-supervised Distributed Clustering with Mahalanobis Distance Metric Learning

Semi-supervised clustering uses a small amount of supervised information to aid unsupervised learning. As one of the semi-supervised clustering methods, metric learning has been widely used to clustering the centralized data points. However, there are many distributed data points, which cannot be centralized for the various reasons. Based on MPCK-MEANS framework [1] , the method of distributed ...

متن کامل

Learning Kernels for Semi-Supervised Clustering

As a recent emerging technique, semi-supervised clustering has attracted significant research interest. Compared to traditional clustering algorithms, which only use unlabeled data, semi-supervised clustering employs both unlabeled and supervised data to obtain a partitioning that conforms more closely to the user's preferences. Several recent papers have discussed this problem (Cohn, Caruana, ...

متن کامل

Semi-Supervised Learning for Web Text Clustering

Supervised learning algorithms usually require large amounts of training data to learn reasonably accurate classifiers. Yet, for many text classification tasks, providing labeled training documents is expensive, while unlabeled documents are readily available in large quantities. Learning from both, labeled and unlabeled documents, in a semi-supervised framework is a promising approach to reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2012

ISSN: 1041-4347

DOI: 10.1109/tkde.2010.215